Anomaly Detection for Inferring Social Structure
نویسنده
چکیده
In traditional data analysis, data points lie in a Cartesian space, and an analyst asks certain questions: (1) What distribution can I fit to the data? (2) Which points are outliers? (3) Are there distinct clusters or substructure? Today, data mining treats richer and richer types of data. Social networks encode information about people and their communities; relational data sets incorporate multiple types of entities and links; and temporal information describes the dynamics of these systems. With such semantically complex data sets, a greater variety of patterns can be described and views constructed of the data. This article describes a specific social structure that may be present in such data sources and presents a framework for detecting it. The goal is to identify tribes, or small groups of individuals that intentionally coordinate their behavior—individuals with enough in common that they are unlikely to be acting independently. While this task can only be conceived of in a domain of interacting entities, the solution techniques return to the traditional data analysis questions. In order to find hidden structure (3), we use an anomaly detection approach: develop a model to describe the data (1), then identify outliers (2).
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملBayesian approach to inference of population structure
Methods of inferring the population structure, its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance. In this article, first, motivation and significance of studying the problem of population structure is explained. In the next section, the applications of inference of p...
متن کاملBoosting Web Intrusion Detection Systems by Inferring Positive Signatures
We present a new approach to anomaly-based network intrusion detection for web applications. This approach is based on dividing the input parameters of the monitored web application in two groups: the “regular” and the “irregular” ones, and applying a new method for anomaly detection on the “regular” ones based on the inference of a regular language. We support our proposal by realizing Sphinx,...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کامل